
Computational Systems Biology



What is “Systems Biology”?

The study of the mechanisms underlying complex biological processes as

integrated systems of many interacting components. Systems biology involves

(1) collection of large sets of experimental data (2) proposal of mathematical

models that might account for at least some significant aspects of this data set,

(3) accurate computer solution of the mathematical equations to obtain

numerical predictions, and (4) assessment of the quality of the model by

comparing numerical simulations with the experimental data.

-(Leroy Hood, 1999)



What are Biological Systems?

Popular Notion:

It is a complex system consisting of very many
simple and identical elements interacting to
produce what appears to be complex behavior

Example:  Cells, Proteins



What are Biological Systems?

 Complex systems of simple elements have functions that 
emerge from the properties of the networks they form

 Biological systems have functions that rely on a combination 
of the network and the specific elements involved



Two ways of looking a problem

 Top down or bottom up

• Either look at the whole organism and abstract large portions 

of it 

• Or try to understand each small piece and then after 

understanding every small piece assemble into the whole

• Both are used, valid and complement each other



Molecular Biology  vs. Systems Biology

 In molecular biology, gene structure and function is studied at the
molecular level

 In systems biology, specific interactions of components in the
biological system are studied – cells, tissues, organs, and
ecological webs.



Systems Biology vs. traditional cell and molecular biology

 Experimental techniques in systems biology are high throughput.

 Intensive computation is involved from the start in systems biology, in order to

organize the data into usable computable databases.

 Exploration in traditional biology proceeds by successive cycles of hypothesis

formation and testing; data accumulates during these cycles.

 Systems biology initially gathers data without prior hypothesis formation;

hypothesis formation and testing comes during post-experiment data analysis

and modeling.
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Systems Biology is an integration of data & approaches



Technologies to study systems at different levels

 Genomics (HT-DNA sequencing)

 Mutation detection (SNP (single nucleotide polymorphisms) methods)

 Transcriptomics (Gene/Transcript measurement, gene chips, microarrays)

 Proteomics (MS, 2D-PAGE, protein chips, Yeast-2-hybrid, X-ray, NMR)

 Metabolomics



From Systems Biology to Computational Biology

 Biological Systems are complex, thus, a combination of
experimental and computational approaches are needed

 Linkages need to be made between molecular characteristics
and systems biology results



High-throughput techniques

 Large-scale identification of components (genes, RNAs, and proteins)

 Their expression patterns

 Their biochemical and genetic interactions

 Provide valuable information about the functions of individual components

and unexpected relationships between components and cellular processes

 A variety of large-scale data sets have been identified and used to assemble

different networks.



biological networks

 Interaction data from individual studies and large-scale screens can

be assembled into a network format

 five types of biological networks:

 transcription factor binding

 protein–protein interaction

 protein phosphorylation

 metabolic interaction

 genetic interaction network



Graph theory, networks

 Two types of networks
• Exponential and scale free
• Most cellular networks are scale free
• It makes the most sense to study the 

interactions of the central nodes not
the outer nodes



Genetic Interaction Networks

 functionally related genes tend to exhibit genetic interactions

 finding genetic interactions has been crucial to geneticists

 systematic high-throughput mapping of genetic interactions by microarray

 In genetic interaction network nodes represent genes

and edges represent interaction between genes



Microarray technology

 Gene expression biology

 Measuring gene expression levels

 two technologies: Two-color cDNA arrays and single-color 

Affymetrix genechips

 Finding and understanding differentially expressed genes

 Advanced analysis (clustering and classification)





Genome information is complete for hundreds of organisms...
...but the complexity and diversity of the resulting phenotype is challenging



The dramatic consequences of gene regulation in biology

Same genome 
• Different tissues
• Different physiology 
• Different proteome 
• Different expression pattern



Gene expression distinguishes...

 ...physiological status (nutrition, environment)

 ...sex and age

 ...various tissues and cell types

 ...response to stimuli (drugs, signals, toxins)

 ...health and disease

 underlying pathogenic diversity

 progression and response to treatment

 patient classes of varying prospects



Measuring gene expression levels

1. total amount of mRNA = optical density at appropriate (UV) wavelength

2. mass separation and specific probing, one gene at a time = Northern blot

3. comprehensive “molecular sorting” = microarray technology

1. two-color cDNA or oligo arrays

2. single-color Affymetrix genechips
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cDNA Spotted Array



Scanning

 Scanner: fluorescent light detection
 two channel (Cy3/Cy5)



Affymetrix GeneChip



an array of oligonucleotide (20~80-mer oligos) 
probes is synthesized in situ (on-chip)

Affymetrix GeneChip



Sample Preparation

1. extract total RNA

2. convert mRNA to cDNA

– reverse transcription with poly(T) primer

3. amplify cDNA into labeled cRNA

– T7 RNA polymerase with biotin labeled CTP and UTP

4. break cRNA into fragments of 35-200mers

5. hybridize and wash

6. scan the chip

Affymetrix GeneChip







 Scanning

 Quantification

Affymetrix GeneChip



 Affymetrix chip

 Fluorescently tagged cRNA

 One chip per sample

 One for control

 One for each experiment

 Other methods include two dyes/one chip

 Red dye

 Green dye

 Control and experiment on same chip

Affymetrix vs tow color microarray



Definitions
Probe – a single-stranded DNA oligonucleotide complementary to a specific 

sequence. Each probe cell consists of millions of probe molecules.

Probe Array – a collection of probes sets.

Probe Set – a set of probes designed to detect one transcript. 16-20 probe pairs.  A 20 

probe pair set is made up of 20 PM and 20 MM for a total of 40 probe cells.

Probe Pair – Two probe cells, a PM and its corresponding MM.

Perfect Match(PM) – probes that are designed to be complementary to the reference 

sequence.

Mis Match(MM) – probes that are designed to be complementary to the reference 

sequence except for 1 base.

Target – sequence from your sample.
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Probe Array = Chip
Probe Set – 16-20 probe pairs(to 

detect particular gene)
Probe Pair  

Probe Cell (Mis Match)  20
Probe Cell (Perfect Match) 20

Probes <= 25 bases 
(millions of copies)

Pixels   24 sq. um

GeneChip Hierarchy



Probe – a single-stranded DNA oligonucleotide 
complementary to a specific sequence. Each probe cell 
consists of millions of the same probe molecules.

The intensity of each cell is an average of each of its 
scanned pixels.

Probe Cell
20 - 50 micrometers

Pixel
3 – 24  um 



DAT file: 
Raw (TIFF) optical image of the hybridized chip

CDF File (Chip Description File): 
Provided by Affy, describes layout of chip

CEL File:
Processed DAT file (intensity/position values)

CHP File: 
Experiment results created from CEL and CDF files

TXT File:
Probe set expression values with annotation (CHP file in text format)

EXP File
Small text file of Experiment details (time, name, etc)

RPT File
Generated by Affy software, report of QC info

Affymetrix File Types



Steps in microarray data processing



Gene expression

• A human organism has over 250 different cell types (e.g., muscle,

skin, bone, neuron), most of which have identical genomes, yet they look

different and do different jobs

• It is believed that less than 20% of the genes are ‘expressed’

(i.e., making  RNA) in a typical cell type

• Apparently the differences in gene expression is what makes the cells different



Some questions for the golden age of 
genomics

 How gene expression differs in different cell types?

 How gene expression differs in a normal and diseased (e.g., cancerous) cell?

 How gene expression changes when a cell is treated by a drug?

 How gene expression changes when the organism develops and cells are 

differentiating?

 How gene expression is regulated – which genes regulate which and how?



AFFYMETRIX DATA FLOW
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Affymetrix Chip Pseudo-image
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*Note that PM, MM are always adjacent
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 Now we have thousands of intensity values associated with 
probes, grouped into probe sets.

 How do you transform intensity to expression values?
 Algorithms

 MAS5 
Affymetrix proprietary method

 RMA/GCRMA
Irizarry, Bolstad

..many others
 Often called “normalization” 

Intensity to Expression 



Common elements of different techniques

 All techniques do the following:

 Background adjustment

 Scaling

 Aggregation

 The goal is to remove non-biological elements of the signal



Introduction to the Statistical Analysis of Two-Color
Microarray Data



 Up to 100,000 genes on a single1.5 cm × 5 cm slide 

 huge amounts of data that require the use of biostatistics for analysis and 

validation

 elementary ideas behind the statistical analysis of microarray data

 Why would a researcher want to do microarray experiments?

 For example, which genes become active if a plant is subjected to 

prolonged drought stress?





Uncertainty in statics

 Many experiments that address the same problem or question can
differ in their outcomes when conducted by different people or with
different materials

 two main sources of variation
 Biological Variation
 Technical Variation

(Technical variation refers to the 
differences resulting from human
and manufacturing error)



Overview of Microarray Experiments

 goal of microarray experiments: compare the gene expression 

levels of a treatment group with those of a control group

 mRNA is extracted from the cells

 The samples are labeled with red and green fluorescent dyes

 The scanner divides the features on the array into pixels and for 

each pixel a computer records the scanned red and green intensity

 Usually, the spots for each microarray cell are not uniform

 The spots with very low intensity are called the background





Microarray Data Analysis

 The first three columns tell us the position of the scanned spot
 D         name of the gene
 E         contains information pertaining to the exact part of the gene that was used
 background, in essence, the probe that binds to the silicate of the glass slide falsely 

increasing the signal of each spot

F for foreground median B for background median red wavelength green wavelength



Adjustment 

 For some genes the background-corrected intensity is negative

 for some spots the median spot intensity is actually lower than 

the median background intensity

 negative gene expression values do not make biological sense (a gene can have

no expression but not negative expression!)

 Usually, negative values are replaced by zeros or small positive constants



Normalization
 The results of a microarray experiment are obviously influenced by technical 

variation
 Normalization means to mathematically manipulate the data to make it uniform
 In microarray experiments, the results are reported as log ratios of the two 

intensity
 If Gi represents the green intensity for gene i and Ri represents the red intensity 

for gene i, then two quantities commonly used are
 The quantity Mi (the log ratio) describes the relationship 

between the two groups
 (the intensity in the red- and green labeled group is the

same, then Mi will be zero. If the red intensity is twice 
as big as the green then Mi will be equal to 1. If, on the other hand, the green   

intensity is twice as big as the red, then Mi will be equal to –1)
 The quantity Ai describes the overall intensity observed for gene i



MA plot

For every feature i on the array, the values Mi and Ai are computed and are 
plotted in an xy plot
Highly up- or down regulated genes are above or below the x-axis.



MA plot

 Experimenters are usually most interested in those genes with:

 high fold change (large positive or negative M value)

 high intensity (large A value)

 For spots that have high fold change but very low intensity it is hard to 

distinguish if the fold change is due to a biological effect or due to 

technical variation in the measurements

 On average, we would like the intensities for both dyes to be about the 

same

 That means, on average, the log ratios Mi should be about zero



Normalization

 The main purpose of normalization is to mathematically remove as much 
systematic variation not caused by biological effects as possible

 Normalization means that one computes the average M value for all genes 
spotted on the array and then makes sure that the average will be zero

 In the small-scale example below, the six features shown all represent the same 
gene



In the first step the log ratios of red (635) to green (532) signal are computed

Normalization



The goal of normalization is to assure that the average of the M values is set to zero 
Computing the average of the six M values above yields –1.154. This average value 
(here –1.154) is then subtracted from the M values for all genes in the example 
above to “correct” them

Normalization



Normalization by Dye-Swap Design

A better way to deal with uneven binding of the dyes to certain genes
In them, the probe from each group (treatment and control) is split into two 
portions and labeled with different dyes
compute M values for the two arrays once as 
red/green log ratio and for the other slide 
as the green/red log ratio
Then average the M values from the two arrays
for each feature:

Here M(1 is the log ratio for feature i on array 1
and M(2 is the log ratio for the same feature
on array 2



Drawing Conclusions
 the goal of microarray experiments to identify genes that become either more or 

less expressed
 For every gene on the microarray we want to decide whether the expression levels 

in the two experimental groups are (significantly) different or not
 If the green and red intensities are different, their quotient R/G is not equal to one. 

If the quotient is not equal to one, then the M value for the spot is not equal to zero
 The challenge in analysis is to determine whether the observed differences are due 

to biological or technical variation
 This is achieved by a statistical analysis of the M values
 How far away from zero do these M values have to be so that we are convinced 

that the result is due to a real difference



Drawing Conclusions

 Only if the distance of the absolute value of the mean is large compared to the variation 
within the measurements will we declare the mean significantly different from zero

 If the variation is small, we may be more inclined to assume a non-zero mean than if the 
variation is large for the same absolute value of mean.



Statistical Decision Making

 Hypothesis tests are an important tool for statistical decision making

 They are used to answer a “Yes/No” question about a population

 Suppose that we repeatedly observe one gene under both treatment conditions

 If the average difference of expression levels is large, then the question that 

has to be answered is:

 whether it is plausible that this large difference is explainable only by 

biological and technical noise?

 If the answer is “Yes,” then we have no reason to be very excited

 but if the answer is “No,” then the difference that we observed is likely due to 

a treatment effect



Hypothesis Testing

 A statistical hypothesis test always follows the same scheme
 This is done in the form of two opposing statements about a population parameter
 The null hypothesis is always of the form “there is nothing unusual happening here”
 In the case of a microarray experiment this translates into “the gene is not

differentially expressed.”
 The alternative hypothesis is a contradiction to the null hypothesis
 The scientist now takes on the role of skeptic
 If the null hypothesis were true, and there truly is no effect, we will compute the

probability to see an outcome as extreme as the one we observed purely through
error variation

 “Extreme” in this context is any observation (such as a large difference in gene 
expressions) that supports the alternative hypothesis more strongly than the 
null hypothesis



Hypothesis Testing

 If it is unlikely to see an effect as extreme or more extreme than the one 
observed from error variation alone, then we conclude that there likely is 
a treatment effect and we then reject the null hypothesis in favor of the 
alternative hypothesis

 This does not mean that the alternative has been proved to be true
 The probability to observe an apparent “effect” (i.e., a large difference 

between treatment and control measurements) if there is only nuisance 
variation is called the p-value of a hypothesis test

 The smaller a p-value is, the less likely it is to
observe data such as the one you  observed in
the experiment if the null hypothesis were true



Hypothesis Testing

 To identify differentially expressed genes in a microarray experiment

separate hypothesis tests are performed for each gene spotted on the array

Hypothesis test       Gene expression experiment using microarray



Hypothesis Test for Log Ratios

 The data file will contain one M value for every spot on the array
 Ideally, each gene is spotted several times on the same array, so that there are 

several M values for each gene
 To conclude whether a gene is expressed differently in the two groups, we will 

decide whether the M values for that gene are close to zero (on average) or not
 To make this decision, we will also have to take the variance of the observations 

into account
 A t-test will be used to decide whether a gene is differentially expressed
 Suppose that a random characteristic with mean zero is measured repeatedly. For n

measurements x1, . . . , xn with average x and standard deviation s, the quantity

has a t distribution with df = n − 1



Hypothesis Test for Log Ratios

 Since we assumed the characteristic to have mean zero, 
the “normal” (or typical) values are those close to zero

 The unusual values are the ones in the tails of the 
distribution, either large positive or large negative 
numbers

 Large positive values of the test statistic mean that the log 
ratio is positive, which means that the red intensity is 
much higher than the green

 Large negative values of the test statistic mean that the log 
ratio is negative, which means that the green intensity is 
much higher than the red



How Large Is “Large”?

 How large (or small) will a test statistic value need to be so that we can 

call it unusual?

 Most researchers work with a significance level of 5%

 They call an observation unusual, if its p-value is smaller than 5%

 That means that the test statistic value falls into the outer 5% tail area of 

the distribution in the graph of the t distribution above

 If that occurs, one may safely argue that the two values (for red and green) 

differ from each other in a “statistically significant” manner between the 

treatment and the control group



t-test for Microarray Data

 We have six M values for the gene At1g01000
 We can compute the average of the six observations x= –1.15 and the standard 

deviation s = 1.28. n = 6, since we have six observations
 Now we can compute the value of the test statistic as



t-test for Microarray Data

 To find the p-value, we have to find the percentage of cases, in which the t-test statistic 
with df = 5 would take on more extreme values than the –2.08 that we observed

 Extreme values are the ones far away from zero
 The area under the t distribution curve corresponding to the extreme values (smaller than 

–2.08 or larger than 2.08) is shaded in the graph below
 In the past, these values had to be looked up in tables.  

Today, Excel and other software programs have them
stored in their statistics package

 In our example, the exact p-value (shaded tail area of the
distribution) is 0.0921 or 9.21%



t-test for Microarray Data

 What conclusion can we draw?
 The p-value is the probability to observe data as extreme/unusual as the one

we saw if the gene expression in the two groups were the same
 Our p-value of 9.21% is quite large (bigger than 5%)
 That means that we would get observations such as these by random chance 

and not due to real difference in gene expression almost 10% of the time
 Hence, our data are nothing unusual and we cannot reject the null hypothesis

(equal expression in both groups) for gene At1g01000

 To determine the p-values for the other genes spotted on the microarray,
repeat the steps described above



ANOVA Model for Gene Expression
 Instead of the normalization and t-test procedure these programs are based on 

statistical ANOVA models
 ANOVA stands for analysis of variance
 For each gene on the array it is to be decided whether the observed differences

between treatment and control group are large enough compared to the variation in 
the experiment to declare the gene differentially expressed

 Other than for the t-test now all observations are combined in just one statistical 
model

 ϒijkgr = μ + Ai + Dj + Tk + Gg + AGig + DGjg + TGkg + εijkgr
 ϒ stands for the logarithm of background corrected intensity

ϒ = log (Foreground median − Background)
 ϒijkgr is the log-intensity for the rth replication of gene g under treatment k labeled 

with dye j on array i
 A stands for the array effect, D stands for dye effect, T stands for treatment effect, 

and G stands for gene effect
 AG, DG, and TG stand for the array–gene, the dye–gene, and the treatment–gene 

interaction effects



ANOVA Model for Gene Expression

 μ represents the overall log-intensity mean
 ε are called the errors
 The errors represent the variation in the experiment that cannot be explained

in a systematic manner (through different dyes, treatments, arrays, or genes)
 The effects (array, dye, treatment, and gene) in the microarray ANOVA model

describe the average contribution that the respective factors have on the log intensities
 For example, consider once more the experiment in which the gene expression of 

treatment is compared to control. In this case the factor “treatment” takes on two levels 
(k = 1 or k = 2) and the treatment effect Tk describes the average difference of log-
intensities between the two groups

 The interaction effects allow us to consider that not all combinations of factors will 
influence log-intensity equally

 All parameters in an ANOVA model can be estimated by averaging over the original 
observations.



ANOVA Model for Gene Expression



ANOVA Hypotheses

 For each gene g on the microarray the null hypothesis corresponding to the
ANOVA model for differential expression is

H0 :T1 + TG1 g = T2 + TG2 g
 In the test statistic, the estimate of the treatment effect

 is compared to its standard deviation ˆσ/√r where ˆσ is the estimate of the residual
standard deviation and r is the number of times the gene is spotted under the same
conditions on the array

 For each gene spotted repeatedly on the array, the value of the test statistic is
computed and a corresponding p-value obtained

 The resulting list of p-values (one for each gene) will be used to make the decision
about differential expression of each gene



Variance Estimation in ANOVA
 There are two possible ways to estimate the standard deviation in the ANOVA

model for differential expression
 One can assume that the observed variation has the same magnitude for all genes on 

the array this is known as the common gene variance model
 Statistically, this method is powerful, since the standard deviation estimate is based 

on very many observations
 biologically this method may not be very meaningful, because it is known that 

genes with very low expression across treatments vary less than genes with very 
high expression

 Alternatively, the residual standard deviation estimate can also be computed 
repeatedly and separately for each gene. This is known as a per-gene variance 
model

 the estimate is statistically much less powerful
 biologically is more appropriate, since it allows for the possibility of different genes 

having different magnitudes of standard deviation



Multiple Testing Issues

 In real microarray experiments, many more than two or six genes are 

spotted on an array

 Regardless of whether we use t-tests or an ANOVA model for the 

analysis very many decisions will have to be made

 If we use a significance level of 5% then for each gene there is up to a 

5% chance that we falsely declare the gene differentially expressed

 If there is a small (5%) chance of a mistake in every decision, then 

overall in the very many decisions we will have to make, many mistakes

 Different procedures exist to correct this problem



Bonferroni Method
 microarray has spots that represent 1000 genes
 each of these 1000 genes differentially expressed
 If you work with a level of 5% for each individual test, then the 

probability that you make at least one wrong decision is

 This means that it is virtually certain that your analysis will contain at 
least one error

 The Bonferroni correction method says, if you would like the probability 
of making at least one mistake to be less than α, (so called family-wise 
error rate (FWER)), then use a significance level of α/n

 In the above example this would mean that if we want to keep the
probability of making at least one mistake under 10%, then we should
declare only those genes differentially expressed, whose p-values are
smaller than 0.10/1000 = 0.0001



False Discovery Rate
the expected proportion of the falsely rejected null hypothesis

“linear step-up procedure” that pushes the false discovery rate 
below a given level q
That means that you can make sure that the proportion of “false 
discoveries” stays, for example, under 10% (if you set q = 0.10)
To conduct a linear step-up test:



False Discovery Rate

 these p-values are shown sorted by size (smallest to largest)

 Pick a level q under which you want to control the false discovery rate. 

Common values for q are 0.10 (10%) or 0.05 (5%)

 Start at the top of the list and check for each gene, whether its p-value is 

bigger than 

 Here, q is the level under which you want to control the FDR, n is the total 

number of genes you have, and i is the number of the test you conduct

 When you find a gene for which the p-value is bigger than        , declare 

this gene and all other genes with larger p-values not differentially 

expressed



False Discovery Rate



False Discovery Rate

In this example, the smallest i for which the p-value is larger than 0.05 · in
is i = 3. In this case we declare only the first two genes differentially expressed



با تشكر از توجه شما


